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The brain’s functional connectivity is complex, has high energetic
cost, and requires efficient use of glucose, the brain’s main energy
source. It has been proposed that regions with a high degree of
functional connectivity are energy efficient and can minimize con-
sumption of glucose. However, the relationship between functional
connectivity and energy consumption in the brain is poorly under-
stood. To address this neglect, here we propose a simple model for
the energy demands of brain functional connectivity, which we
tested with positron emission tomography and MRI in 54 healthy
volunteers at rest. Higher glucose metabolism was associated with
proportionally larger MRI signal amplitudes, and a higher degree of
connectivity was associated with nonlinear increases in metabo-
lism, supporting our hypothesis for the energy efficiency of the
connectivity hubs. Basal metabolism (in the absence of connectiv-
ity) accounted for 30% of brain glucose utilization, which suggests
that the spontaneous brain activity accounts for 70% of the energy
consumed by the brain. The energy efficiency of the connectivity
hubs was higher for ventral precuneus, cerebellum, and subcortical
hubs than for cortical hubs. The higher energy demands of brain
communication that hinges upon higher connectivity could render
brain hubs more vulnerable to deficits in energy delivery or utili-
zation and help explain their sensitivity to neurodegenerative con-
ditions, such as Alzheimer’s disease.

fMRI connectivity | PET-FDG | allometric scaling | energy budget |
graph theory

The high energetic cost of human brain function, which is 10
times higher than what would be expected from its weight

alone (1, 2), can only be maintained through a combination of
strategies for efficient energy use (3–5). Neural communication
accounts for a significant fraction of the energy consumed by the
brain (6), most of which was termed “dark energy” because it
reflects intrinsic activity of uncertain functional origin (7).
Under normal physiological conditions, the brain derives most

of its energy requirements from the metabolism of glucose and
energy reserve glucose equivalents (8, 9). In vivo PET imaging
studies with [18F]fluorodeoxyglucose (FDG), a radiotracer used
for measuring glucose metabolism, have demonstrated high
baseline glucose metabolic rates in ventral posterior regions of
the brain (10). The brain uses a large fraction of this energy to
support synaptic transmission, which is associated with the he-
modynamic responses (11, 12) that are captured during stimula-
tion studies with functional magnetic resonance imaging (fMRI)
and the spontaneous oscillations captured during resting-state
fMRI (R-fMRI), and also to sustain the resting potentials in
neurons and glia (13, 14). Thus, the high degree of connectivity of
the ventral posterior regions of the brain with other brain regions
(15) suggests an association between energy consumption and
R-fMRI (16). However, the energy budget of the spontaneous
R-fMRI signals remains largely unknown, and a better under-
standing of the relationship between energy consumption and
functional connectivity could be valuable for R-fMRI studies on
neuropsychiatric disorders of metabolic origin.
Here, we present a model for the in vivo energy demands of

functional connectivity. We tested this model in humans at rest
by mapping the cerebral metabolic rate of glucose (CMRGlu)
with FDG and PET, and the amplitudes of the blood oxygen
level-dependent (BOLD) signals and the degree of functional

connectivity with MRI. Specifically, we hypothesized that CMRGlu
would show a linear association with the amplitude of the R-fMRI
signal fluctuations. We also hypothesized that CMRGlu scales
with the degree of the functional connectivity, the number of
connections of the network nodes, which support functional in-
tegration (global degree) and functional segregation (local degree)
in the brain. In addition, we propose an alternative approach to
study the energy cost of the functional connectivity based on the
degree-to-metabolism ratio. Specifically, this voxelwise measure of
energy efficiency evaluates the degree of connectivity of the brain
regions relative to their glucose consumption and reflects the
energy demands of neural communication.

Model
To model the brain’s in vivo energy demands that support func-
tional connectivity, we assumed that the energy consumed by a
cluster of neurons (and supporting glial cells) in a brain image
element (voxel) is proportional to its glucose metabolism, Q, and
to the amplitude of the hemodynamic signal fluctuations, A,

Q∝ A; [1]

used in the detection of functional connectivity (17, 18).
Let us further assume as in Hopfield neural networks (19) that

the metabolic cost of neuronal signaling in a voxel x0 is pro-
portional to k, the average number of direct functional con-
nections to other voxels in the brain. These stimulated voxels can
in turn stimulate other voxels in a sequence of connectivity cas-
cades (Fig. 1A). If k >> 1, the total number of stimulated voxels
(or functionally connected voxels with x0; i.e., degree), D, can be
approximated as D ∝ km ∼ Qm in terms of Q and the number of
cascades, m, in the network of voxels stimulated by x0.
Based on these considerations and the fact that power laws

involving metabolic budget are common in biology, we predict
that glucose metabolism and the degree of the functional con-
nectivity would have power scaling across voxels:

Q∝Db; [2]

where the scaling factor, 0 ≤ b = m−1 ≤ 1, reflects in part the
communication speed of the network because shorter path lengths
communicate information faster than longer path lengths. Note
that m is analogous to the maximum of the shortest path lengths,
dmax, between x0 and all other voxels in the subnetwork defined
by voxels functionally connected to x0, which can be computed
independently from R-fMRI data alone. The goal of this study
was to assess the energy cost of R-fMRI in various networks
because prior studies have reported differences in aerobic glycol-
ysis across brain regions (20). We hypothesized that differences
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in aerobic glycolysis would cause differences in power scaling in
the brain. For this purpose, we used PET-FDG and R-fMRI to
test Eqs. 1 and 2, and the extent of the similarity between m and
dmax in the healthy human brain.

Results
CMRGlu. In the cerebral cortex, glucose metabolism was maximal in
medial occipital [Brodmann areas (BAs) 17–19], parietal (BAs 7, 39,
and 40), frontal (BAs 9, 11, 44, 46, and 47), and temporal (BA 22)
regions and in anterior cingulum (BA 32) (70 > CMRGlu >
50 μmol·100 g−1·min−1; Fig. 1B). Outside of the cerebral cortex
glucose metabolism was also high in the superior posterior cere-
bellar lobe (55 > CMRGlu > 45 μmol·100 g−1·min−1) and in the
putamen (60 > CMRGlu > 50 μmol·100 g−1·min−1).

R-fMRI Signal Amplitude. The amplitude of the R-fMRI signal
fluctuations in the thalamus, auditory and visual areas, cuneus,
precuneus, posterior parietal and frontal cortices, and posterior
cerebellum was higher than the whole-brain average (Fig. 1C).

Degree. The most prominent global degree hubs (two times
or higher degree than the whole-brain average) were located
in posterior cingulate/ventral precuneus (BAs 7 and 23), visual

cortex (BAs 17–19 and 37), left angular gyrus (BA 39), insula,
supplementary motor area (BA 6), cerebellum (posterior lobe
and vermis), thalamus, and globus pallidus (Fig. 1D). The most
prominent local degree hubs were located in posterior cingulate/
ventral precuneus (BAs 7 and 23), left parietal (BA 39), occipital
(BAs 17 and 19), left frontal (BAs 4, 44, and 45), and cingulate
(BA 24) cortices, as well as cerebellum (posterior lobe and
vermis) and thalamus. These findings are consistent with the
previously reported locations of hubs in the human brain (21).

CMRGlu vs. R-fMRI Signal Amplitude. Voxelwise correlations across
subjects between CMRGlu and the amplitude of the R-fMRI
signal in the brain (PFWE < 0.05; Table 1 and Fig. 2A), revealed
that higher metabolism was associated with higher R-fMRI sig-
nal amplitudes in cerebellum, occipital (BAs 17 and 18) and
parietal (BA 47) cortices.
Average metabolism and R-fMRI signal amplitudes were also

linearly associated across voxels, independently for default-mode
(DMN), dorsal attention (DAN), and cerebellar networks (Fig.
2D). Differences in the linear relationships for the networks
might reflect the overall higher metabolism in the cortex than the
cerebellum. The linear relationship between CMRGlu and the
amplitude of the R-fMRI signals also emerged for each indi-
vidual (SI Methods). Across subjects, the differences in linear
scaling between metabolism and R-fMRI amplitude among these
networks was highly significant, both for the slope (P < 0.001;
paired t test) and the intercept (P < 0.004; Table 2). Note that
the adjustable parameters of the model (γ, the slope, and β, the
intercept) of the metabolic increases with increased R-fMRI
signal amplitudes were robust across subjects (t score > 18, SE <
6%; Table 2) for all networks. On average across regions, γ = 8.1 ±
0.8 μmol·100 g−1·min−1, and β = 17.3 ± 1.4 μmol·100 g−1·min−1,
were not different for DMN, DAN, and cerebellum (P > 0.01;
Table 2). The correlation between whole-brain average values of
CMRGlu and R-fMRI signal amplitude did not reach statistical
significance (P > 0.08).

CMRGlu vs. Degree. Whole-brain average values of CMRGlu and
local degree were significantly correlated across subjects (R =
0.42; P < 0.006). However, the correlation between whole-brain
average values of CMRGlu and global degree did not reach
statistical significance (P > 0.11).
Voxelwise degree–CMRGlu correlations across subjects re-

vealed that higher metabolism was associated with higher global
degree in occipital (BAs 17 and 37), frontal (BA 6), temporal
(BAs 21 and 22), and parietal (BA 40) cortices and cerebellum
(PFWE < 0.05; Table 3 and Fig. 2B). Similar correlations with
CMRGlu across subjects were observed for the local degree
(Fig. 2C).
The power scaling model robustly fitted the voxel values of

CMRGlu with those of global degree (Fig. 2E) and local degree
(Fig. 2F), averaged across subjects independently for DMN,
DAN, and cerebellar networks. The power scaling between
CMRGlu and degree (local and global) also emerged for each
individual (SI Methods). Even though the adjustable parameters
of the model (a and b) showed significant interindividual vari-
ability (SI Methods), they were highly significant across subjects
(t score > 9.9, SE ∼10%; Table 2) for all networks. The basal
glucose metabolism (metabolism in absence of global degree)
averaged a = 11 ± 2 μmol·100 g−1·min−1 (mean ± SD) across
networks. Across subjects, the basal metabolism was significantly
lower for the cerebellum than for DMN and DAN (P < 0.005;
paired t test). In average across regions, the power scaling factor
of the metabolic cost of global degree, b = 0.27 ± 0.03, was
similar to that of local degree, b = 0.29 ± 0.03, and for DMN,
DAN, and cerebellum (P > 0.01; Table 2).

Fig. 1. (A) Schematic representation. Neuronal firing in the voxel x0 (red)
stimulates secondary voxels (green) trough a sequence of m = 3 sequential
stimulation cascades (primary red and secondary green arrows) with k = 2
stimulated voxels per cascade in average, and a total number of D = km

stimulated voxels (degree of x0). (B) Absolute maps of CMRGlu computed
from PET scans collected in resting conditions (eyes open) in 54 healthy
subjects. Subjects were injected with 4–6 mCi of FDG i.v. and were asked to
refrain from moving or speaking during the 30-min uptake period. Absolute
CMRGlu maps were computed from 20-min emission scans that were acquired
using standard PET procedures. (C) The amplitude of the low-frequency MRI
signal fluctuations were computed for all 54 subjects from R-fMRI time series
(40). (D) Global and local degree, graph theory measures of the number of
functional connections per voxel, were mapped at 3-mm isotropic resolution
from R-fMRI time series (21), to quantify the degree of the functional con-
nectivity in the brain.
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Glucose Efficiency. We computed the glucose efficiency (η) index
using the ratio between the strength of global degree and
CMRGlu at each voxel, which was rescaled to a whole-brain
mean of 1. These relative efficiency maps reflect the metabolic
cost of global degree (η > 1: lower CMRGlu per functional
connection than that of the whole-brain mean) for each subject.
Across subjects, η was highly significant in most brain voxels
(PFWE < 0.05). In posterior cingulum (BA 23), parahippocampal
(BAs 37 and 20), fusiform and inferior occipital (BA 19) gyri,
motor and premotor cortex (BAs 4 and 6), middle cingulum/
corpus callosum, cerebellum (vermis and tonsil), anterior thala-
mus and substantia nigra η was two times or higher than its av-
erage brain value (Fig. 3). Rolandic operculum (BA 6), angular
(BA 39), superior frontal (BA 10), anterior cingulate (BA 24),
medial orbitofrontal cortex (BA 11), caudate also exhibited
high η.

Path Length. In average across voxels and subjects, the maximum
of the shortest path lengths in the local functional connectivity
clusters was dmax = 2.7 ± 0.5 for DMN and DAN and dmax =
2.9 ± 0.5 for the cerebellum. The number of functional cascades
within the local clusters, m = b−1 = 3.5 ± 0.5, and dmax were not
significantly different (P > 0.2).

Discussion
Energy-efficient synaptic neurotransmission may dominate the
brain energy budget (4). We found that CMRGlu and functional
connectivity measures (R-fMRI amplitude, and local and global
degree) were significantly correlated across subjects, and that the
correlation of whole-brain values of CMRGlu and local degree
accounted for 18% of the variability in global CMRGlu. This
indicates that the differences in whole-brain CMRGlu (range, ±5
mmol·100 g−1·min−1) between subjects partially reflect differences
in their degree of local functional connectivity. The metabolic

Table 1. Correlations with R-fMRI signal amplitude

Region BA/lobe

MNI coordinates,
mm

CMRGlu,μmol·100 g−1·min−1 A
D

CMRGlu
vs. D

CMRGlu
vs. A

ηx y z [k] [T] [T] [k]

Cerebellum Crus −12 −90 −24 43.0 ± 1.3 2.5 ± 0.1 367 ± 32 2.4 4.1 282 1.1 ± 0.1
Calcarine 17 3 −87 −6 63.7 ± 1.5 3.2 ± 0.1 446 ± 45 3.0 3.6 0.9 ± 0.1
Lingual 17 −3 −93 −18 42.5 ± 1.6 2.3 ± 0.1 309 ± 33 1.9 3.6 0.9 ± 0.1
Cuneus 18 −3 −75 30 60.9 ± 1.3 3.1 ± 0.1 544 ± 63 NS 3.9 335 1.1 ± 0.1
Precuneus 7 −3 −66 57 48.0 ± 1.2 2.7 ± 0.1 341 ± 36 NS 3.9 0.9 ± 0.1
Precuneus 7 0 −69 39 60.6 ± 1.4 3.2 ± 0.1 455 ± 40 NS 3.6 1.0 ± 0.1

Metabolism (CMRGlu), R-fMRI signal amplitude (A), global degree centrality (D), and efficiency (η) for brain regions showing significant correlations
(PFWE < 0.05) between CMRGlu and A across 54 healthy subjects. A correlation threshold level R = 0.6 was used to compute D.

Fig. 2. Statistical maps of the voxelwise correlations between CMRGlu and R-fMRI signal amplitude (A) and between CMRGlu global (B) and local (C) degree
across 54 healthy subjects, superimposed on surface views of the cerebral cortex (medial and lateral) and the posterior cerebellum. The color bars indicate
t-score values. Scatter plots exemplifying the linear association between CMRGlu and R-fMRI signal amplitudes (D) and the power scaling of CMRGlu and
degree (E and F) across 54 healthy subjects for three different networks. The color lines are reduced-major axis regression fits to the data (0.96 < R2 < 0.99).
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demands associated with neurotransmission in response to exter-
nal stimuli are believed to cause dynamic changes in blood supply
(12). Thus, R-fMRI signals likely reflect the energy demands
associated with synaptic currents and action potentials (13,
14). Previous MRI studies that evaluated the BOLD/perfusion
ratio at varying metabolic demands during rest and task con-
ditions have suggested that resting-state activity reflects metabolic
processes (16). These findings, however, could have partially re-
flected the similar vascular origins of the BOLD and perfusion
MRI signals. Here, using a PET-MRI multimodal approach, we
demonstrate a linear association between baseline measures of
absolute glucose metabolism, a direct marker of neuronal ac-
tivity, and the amplitude of the low-frequency MRI signal fluc-
tuations of the brain regions at rest. Thus, signal fluctuations
with larger amplitudes were localized in brain regions char-
acterized by higher metabolism. This robust linear relationship
across brain regions was demonstrated for every subject and
supports our model hypothesis about the proportionality be-
tween R-fMRI amplitudes and glucose metabolism (Eq. 1).
Increases in local and global degree were associated with

power law increases in CMRGlu across voxels. Digital electronic
circuits show similar power scaling (Rent’s rule) between the
number of processing elements and the number of external
connections or “pins” (22). Similarly, the amount of gray matter
(containing the central processing part of the neuron or “soma”)
and white matter (containing the axons, the physical connections
between distant neurons) shows power scaling across a wide
range of mammalian species (23). Previous studies have revealed
that glucose metabolism (24) and the number of synapses per
neuron (25) increase allometrically with brain volume across
species. Thus, our findings suggest an association between in-
creased CMRGlu and increased synaptic density across brain
regions. The voxelwise correlations between metabolism and
degree across subjects are consistent with the assumption that
neural networks rely on a well-established “small-world” topology
to accomplish maximal communication speed with minimal energy

consumption (26–30). Overall, our results are robust and support
the power scaling of glucose metabolism with degree (Eq. 2).
It is worth noting that the metabolic demands of local and global

degree were greater for the cerebral cortex than for the cerebellum.
This finding is consistent with different levels of aerobic glycolysis
(glucose metabolism that exceeds its metabolism through oxidative
phosphorylation despite sufficient oxygen availability) between the
cerebellum and the cortex (20), and with the highest energy effi-
ciency of the cerebellar granule cells and thalamocortical relay
neurons (14). More specifically, the more negative scaling for the
cerebellum than for the DMN and DAN could reflect the lower
level of aerobic glycolysis for the cerebellum than for the cortex (20)
and thus explain its apparent higher efficiency.
The basal metabolism (in absence of connectivity) that emerged

from the nonlinear metabolic demands of global degree was 30%
of the whole-brain CMRGlu and could reflect the average en-
ergy required for vital functions of neurons such as maintenance
of resting potentials and action potentials (31). This suggests that
the spontaneous brain activity accounts for 70% of the energy
consumed by the brain, which is consistent with the high energy
demands (80% of the brain energy) of active signal processing
(2, 32, 33) and cortical computation (34). Our estimation of the
energy cost of spontaneous brain activity is also consistent with
the energy demands of synaptic neurotransmission (64% of the
energy budget for gray matter) (14).
The power scaling factor, 0 ≤ b = m−1 ≤ 1, reflects in part the

communication speed of the network. Energy-efficient networks
can support fast communication at low energy cost because of
their short path length. In such networks, most voxels do not
connect to one another but can be reached from every other
voxels by a short path length. Our power-scaling model estimates
that the average number of functional cascades (i.e., the path
length) in the local functional connectivity clusters ism ∼3.5 ± 0.5.
This is consistent with our independent estimation of the average
maximum shortest path length, dmax ∼2.8 ± 0.5, computed directly
from the R-fMRI data.

Table 2. Average parameters of the model

Region

a (T) b (T)
γ (T) β (T)

Global degree Local degree Global degree Local degree R-fMRI amplitude

Cerebellum 8.7 ± 0.9 (9.9) 19.0 ± 0.9 (21.7) 0.30 ± 0.02 (17.3) 0.26 ± 0.02 (15.3) 7.3 ± 0.3 (22.2) 15.8 ± 0.9 (18.0)
DMN 12.3 ± 1.2 (10.8) 19.4 ± 0.6 (32.5) 0.25 ± 0.02 (14.5) 0.29 ± 0.01 (27.0) 8.0 ± 0.3 (31.5) 17.8 ± 0.6 (31.2)
DAN 12.8 ± 1.2 (10.7) 19.2 ± 0.6 (33.5) 0.25 ± 0.02 (14.6) 0.32 ± 0.01 (30.0) 8.9 ± 0.3 (35.9) 18.4 ± 0.5 (36.0)

Parameters for the power scaling model, Q = a Db, that optimally fit CMRGlu (Q) and degree centrality (D), and for the linear model, Q = γ A+ β that
optimally fit Q and the R-fMRI signal amplitude (A) in the default mode (DMN) and dorsal attention (DAN) networks, and in the cerebellum. The average and
SEs of the parameters were computed across 54 subjects. T: t-score values (values in parentheses). Units of measures: [a], [β], and [γ] = μmol·100 g−1·min−1.

Table 3. Correlations with degree

Region BA/lobe

MNI
coordinates,

mm

CMRGlu, μmol·100 g−1·min−1 Amplitude
D CMRGlu vs. A

CMRGlu
vs. D

ηx y z [k] [T] [T] [k]

Inferior parietal 40 −51 −42 57 32.0 ± 0.8 1.5 ± 0.3 206 ± 21 NS 3.5 1,752 0.8 ± 0.1
Superior temporal 22 −66 −48 21 32.0 ± 0.7 1.5 ± 0.4 228 ± 27 NS 3.5 0.9 ± 0.1
Cerebellum Post −42 −84 −30 19.0 ± 0.7 1.1 ± 0.4 141 ± 12 1.8 3.8 1,877 1.0 ± 0.1
Middle temporal 37 45 −66 3 40.9 ± 1.0 2.2 ± 0.7 479 ± 77 2.4 3.4 1.3 ± 0.2
Lingual 17 3 −78 3 65.7 ± 1.5 3.1 ± 0.9 488 ± 53 2.5 3.4 1.0 ± 0.1
Superior frontal 6 −18 −3 54 34.4 ± 1.0 1.9 ± 0.6 644 ± 92 1.9 3.6 1,951 1.9 ± 0.2
Rolandic operculum 6 −48 3 9 42.2 ± 0.8 2.2 ± 0.6 522 ± 66 NS 3.5 1.4 ± 0.1
Middle temporal 21 −48 6 −24 33.8 ± 0.7 2.8 ± 0.7 297 ± 37 NS 3.5 1.1 ± 0.1

Metabolism (CMRGlu), R-fMRI signal amplitude (A), global degree centrality (D), and efficiency (η) for brain regions showing significant correlations
(PFWE < 0.05) between CMRGlu and the D across 54 healthy subjects. A correlation threshold level R = 0.6 was used to compute D.
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The glucose efficiency of global degree (assessed with degree-
to-CMRGlu ratio index) in association areas (BAs 4, 6, 19, 20,
23, and 37), cerebellum (vermis and tonsil), and anterior thala-
mus was two or more times higher than that of the whole-brain
average (Fig. 3). These regions show strong connectivity with
other brain regions (15), which is consistent with the energy ef-
ficiency of the cerebellar granule cells and thalamocortical relay
neurons (14). Because the capacity of the human brain hinges on
energy-efficient cortical networks (26–30) and glucose metabo-
lism supports the energy requirements of neuronal activity (8, 9),
our findings suggest that higher glucose metabolism in those
functional hubs serves to supports their higher communication
rate. However, and in another example of the “robust yet fragile”
nature of complex systems endowed with highly optimized tol-
erance (35), these functional hubs may be highly vulnerable to
conditions that endanger their energy supply (3) and become
primary targets of normal processes, like aging (36) or neuro-
degenerative diseases, like Alzheimer’s (37).

Methods
Subjects. Fifty-four healthy right-handed participants (age, 36 ± 12 y; mean ±
SD; 26 females) signed a written consent approved by the Institutional Re-
view Board at Brookhaven National Laboratory before the study. These
participants were screened carefully with a detailed medical history, physical
and neurological examination (SI Methods).

PET Acquisition. PET images were acquired in resting conditions (eyes open)
with a Siemens/CTI ECAT HR+ using standard procedures (38). Arterialization
was achieved by warming the hand to 44 °C and automated arterial sam-
pling every 2.5 s for the first 2 min and then every minute from 2 to 5 min
and then at 10, 15, 20, 30, 45, and 60 min. Subjects were injected with 4–6
mCi of FDG and were asked to refrain from moving or speaking during the
30-min uptake period. The 20-min emission scan (3D mode) was started
35 min after radiotracer injection. The PET scans were transformed into meta-
bolic images as previously described (38), and the CMRGlu was computed using
an extension of Sokoloff’s model (39).

MRI Acquisition. Subsequently, subjects underwent BOLD fMRI in a 4-tesla
Varian/Siemens MRI scanner. A T2*-weighted single-shot gradient-echo
planar imaging sequence (echo time/repetition time, 20/1,600 ms; 4-mm slice
thickness; 1-mm gap; 33 coronal slices; 3.1 × 3.1 mm in-plane resolution) was
used to sample the spontaneous signal fluctuations in the brain. The par-
ticipants were instructed to remain silent, motionless, and awake with their
eyes open during the 5-min resting-state scan.

The CMRGlu images were normalized to the standard stereotactic space of
theMontreal Neurological Institute (MNI) with 3-mm isotropic voxels, and the
R-fMRI time series were realigned and normalized to the MNI space with
3-mm isotropic voxels. Global signal intensity was normalized across time
points, voxels with poor signal-to-noise were eliminated, and bandpass
temporal filtering (0.01–0.10 Hz) was used to remove magnetic field drifts
of the scanner and minimize physiologic noise of high-frequency compo-
nents (15).

R-fMRI Signal Amplitude. The fast Fourier transform of the preprocessed R-
fMRI time series was used to compute the amplitude of the low-frequency
fluctuations in the whole brain as the average of the power spectrum’s
square root in the low-frequency bandwidth (0.01–0.06 Hz) (40). R-fMRI

signal amplitude maps were rescaled to a mean of 1 across brain voxels
and subjects.

Global Degree. R-fMRI time points that were severely contaminated with
motion were removed using a “scrubbing” method (41) and the remaining
motion effects on R-fMRI were controlled using motion covariates (15). The
Pearson correlation was used to assess the strength of the functional con-
nectivity, Cij, between voxels i and j in the brain, and a correlation threshold
0.6 was used to compute the binary undirected connectivity coefficients,
aij = 1 (if Cij > 0.6) or 0 (if Cij ≤ 0.6).

This correlation threshold ensures significant correlations between time-
varying signal fluctuations at PFWE < 0.05, minimizes false-positive rate and
central processing unit time, and maximizes sensitivity and dynamic range
(15). The global functional connectivity density, also called “degree” (42, 43),
was calculated from the N × (N − 1)/2 binary matrices (n = 57,713 voxels) as
ki = ∑aij, using a C-algorithm and parallel computing (21).

Local Degree. The local functional connectivity density (“local degree”)
reflects the number of connections in the local functional connectivity
cluster (ki = ∑aij)local, and was computed as the number of elements in the
local functional connectivity cluster using “growing” algorithm (15).

Shortest Path Length. The maximum of the shortest path lengths, dmax, be-
tween a voxel, xi and all other j voxels in the local functional connectivity
cluster of xi was computed as the largest element in the i row of the shortest
path length matrix (42),

dij =
X

auv ; [3]

where the coefficients auv ∈ g i↔ j were defined by the shortest geodesic
distance, g, between nodes i and j. The adjacency matrix used to calculate dij

was computed from the corresponding correlation matrix of the local net-
work cluster, Cij, using a correlation threshold R = 0.9.

Energy Scaling. Image voxels were sorted by their degree of connectivity and
averaged into bins of Δk = 20 (global degree) or Δk = 1 (local degree), in-
dependently for cerebellum, DMN, and DAN. To assess the power scaling
between metabolism and degree across voxels, a linear model, ln(Q) = ln(a) +
b ln(D), was fitted to the average values of CMRGlu (Qi) and degree (Di) from
each bin, independently for each network, and for each subject using re-
duced-major axis regression, which takes into account the error variance in
both variables [ln(Q) and ln(D)] and is ideal for testing the power scaling.
Similarly, image voxels were sorted by their R-fMRI signal amplitude and
averaged independently for cerebellum, DMN, and DAN, and a standard
linear regression model, Q = γ A + β, was fitted to the average values of
CMRGlu (Qi) and R-fMRI signal amplitude (Ai), independently for each net-
work, and for each subject to assess the relationship between CMRGlu and
R-fMRI signal amplitude across voxels. The coefficient of determination R2

was used to assess the goodness of the regressions. A rigorous R2 > 0.95 was
used to evaluate the agreement between the power-scaling model and
the data.

Glucose Efficiency Index. Relative maps of the glucose efficiency index, η, were
computed for each subject as the ratio between the strengths of global
degree and CMRGlu at each voxel, and rescaled to a whole-brain mean of 1.
These relative efficiency maps reflect the metabolic cost of the global hubs
(η > 1 reflect lower CMRGlu per functional connection than that of the
whole-brain mean).

Statistical Methods. The brain maps (CMRGlu, amplitude, local degree, global
degree, η) were spatially smoothed (8-mm isotropic FWHM) in SPM8 (Well-
come Trust Centre for Neuroimaging, London, UK), and one-sample t test
was used to assess their statistical significance. The Biological Parametric
Mapping (44) was used to access the linear association of absolute glucose
metabolism (CMRGlu) with R-fMRI signal amplitude, and with local and
global degree across subjects. Statistical significance for group analyses was
set by cluster-level PFWE < 0.05, corrected for multiple comparisons with the
random field theory and a familywise error.
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Fig. 3. Average distribution of glucose efficiency (η) across subjects super-
imposed on the surface views of the Colin human brain.
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